
FAA Requirements Engineering
Management Handbook!

Kansas State University

6. Revise the Architecture to Meet
Implementation Constraints

Steps in the REMH

1.  Develop the System Overview
2.  Identify the System Boundary
3.  Develop the Operational Concepts
4.  Identify the Environmental Assumptions
5.  Develop the Functional Architecture

6.  Revise the Architecture to Meet Implementation
Constraints

7.  Identify System Modes
8.  Develop the Detailed Behavior and Performance Requirements
9.  Define the Software Requirements
10.  Allocate System Requirements to Subsystems
11.  Provide Rationale

Architecture Revision: Goals

  Iteratively update the functional architecture from Section
5 to arrive at the final architecture

  Take into account additional constraints that were not
directly implied/uncovered by use-case and functional
architecture process
  Implementation constraints (e.g., available hardware

components, the need to deploy on a particular platform)
  Safety constraints
  The need to integrate with legacy systems

  Note: if this step is not taken, we might be in an
unfortunate position where we have two architectures
(the “abstract functional” one, and the real final one) and
we need to continuously map from functional architecture
to final architecture

What are we trying to achieve with this step in the requirements
engineering process?

Architecture Revision: Artifacts

  Revised functional architecture that takes into
account:
  Component failure / safety
  Legacy systems
  Implementation constraints

  Revised architecture should give us a framework for
organizing detailed requirements

What artifacts should we produce as a result of this step?

6 Revise the Architecture to Meet
Implementation Constraints

6 Revise the Architecture to Meet Implementation Constraints: The organization
produced through functional analysis is a logical architecture that may not take into account
additional constraints, such as the need to satisfy system safety requirements, integrate with
legacy systems, or to meet implementation constraints imposed by a particular platform. This
practice describes an iterative process that starts from the previously developed functional
architecture and leads to an architecture that addresses these concerns. This architecture is then
used as the framework for organizing the detailed requirements.

6.1 If implementation constraints cannot be satisfied with the ideal functional architecture that is developed during
functional analysis, modify the functional architecture as necessary, and use the final system architecture as
the framework for organizing the detailed requirements
6.2 When modifying the functional architecture to accommodate implementation constraints, keep the final
system architecture as close to the ideal functional architecture as possible.
6.3 Revise the system overview to reflect any changes in how the system interacts with its environment, any
new functionality added to the system to satisfy the implementation constraints, or any changes in system goals.
6.4 Revise the operational concepts to reflect any changes in how operators or other systems interact with the
revised system architecture.
6.5 Review the use cases to identify steps where exceptions to the nominal behavior could occur. Develop
exception cases to identify how each exception will be handled.
6.6 If an exception can only occur at a few points, link those steps to the exception case. If the exception can
occur at almost any point, use the exception case precondition to identify when the exception case occurs.
6.7 Revise the system boundary to reflect any changes in the monitored and controlled variables.
6.8 Identify and document any new or changed environmental assumptions for the revised functional
architecture.
6.9 Revise the dependency diagrams to show the revised functional architecture.
6.10 Revise any high-level requirements affected by the changes in the revised functional architecture.

6.1 Modify the Architecture to Meet
Implementation Constraints

  Final architecture allows organization of detailed
requirements

  Diagrams generated in this phase are a “graphical
table of contents” for detailed requirements

  Consider that the functional architecture may or may
not need significant changing

If implementation constraints cannot be satisfied with the ideal functional
architecture that is developed during functional analysis, modify the functional
architecture as necessary…

6.2 Keep Final System Architecture
Close to Ideal Functional Architecture

  Original functional architecture was developed
through analyzing the problem domain without being
encumbered by the solution domain.

  Problem domain is less likely to change than
implementation constraints
  Thus, the closer the final architecture is to the ideal

functional architecture, the more stable it will be
  It’s desirable to minimize differences between ideal

functional architecture and the final functional architecture.

But on the other hand… don’t stray too far from the ideal
functional architecture.

The Impact of Designing for Safety

  Safety-critical systems need very high levels of
reliability
  Even though this often conflicts with keeping costs

reasonable

  In avionics, the ARP 4761 process involves
  Performing Functional Hazard Assessment (FHA) that

identifies high-level system hazards.
  FHA is then used during Preliminary System Safety

Assessment (PSSA) to determine if could contribute to the
realization of these hazards.

  If so, we will have relevant safety requirements on the
determined by the PSSA.

Let’s focus on how the architecture and requirements document might
change as we incorporate notions of safety/reliability into our work

Functional Hazard Analysis
Isolette Example Hazard

What are the ways that this hazard could be realized?

PSSA of Isolate System

  The Thermostat could fail and turn the Heat Source on
or off for too long.

  The Temperature Sensor could provide an incorrect
temperature to the Thermostat.

  The Operator Interface could provide the wrong Desired
Temperature Range to the Thermostat.

  The Heat Source could fail, either by remaining on or off
for too long or by failing to provide sufficient heat to
maintain the Desired Temperature Range.

The Isolette system PSSA (not the Thermostate itself) identifies several
ways this hazard could be realized.

What constraints do the initial reliability requirement of the Isolette impose on the reliability of the
components mentioned above? We can reason about such things using a fault tree.

Example Isolette Fault Tree
Fault Tree Analysis (FTA) is a top down, deductive failure
analysis in which an undesired state of a system is analyzed
using boolean logic to combine a series of lower-level events

The fault tree derived during the PSSA of the Isolette system is shown above. Since each System Function could cause hazard H1, each
function is assigned a probability of failure of less than 2 x 10-10 per hour of operation.

Assessment

  Developing individual components that achieve this level
of reliability would be very expensive.

  Even designing a Thermostat that provides this level of
reliability would contradict goal G2 to produce the
Thermostat at minimal manufacturing cost.

  A less costly solution is to add a monitor that activates
an alarm if the Current Temperature in the Isolette falls
below or rises above a safe level.
  Note: we often refer to this architecture strategy as a safety

system.

Which failures would this protect against?
Ans: against a failed Thermostat Function and a failed Manage Heat Source
Function (but not against a misleading Temperature Sensor Function or a
misleading Operator Interface Function)

Revised Fault Tree
Using a safety system…

What has been achieved?

Ans: Instead of incredibly
expensive, highly-reliable
components, add cheaper
components and an alarm plus rely
on normal monitoring procedures of
nurse.

PSSA Yields Derived Safety Reqs
This change in architecture strategy gives rise to new high-
level requirements

PSSA Yields Derived Safety Reqs

To meet these requirements while minimizing manufacturing costs, the Isolette designers
proposed a design in which the monitor function is implemented within the thermostat itself.
After extending the PSSA to this design, this was acceptable, providing the independence of the
monitor is maintained.

This change in architecture strategy gives rise to new high-
level requirements

Changes Ripple Throughout

  Note the “ripple” of changes this causes through the
entire requirements document:

To avoid confusion, the
Thermostat Function was
renamed as the Regulator
Function, where the Thermostat
is now considered the
combination of the Regulator and
Monitor Functions.

6.3 Revise the System Overview

  The system boundary has been modified
  New monitored variable: “Alarm Temperature Range”
  New controlled variable: “Monitor Status”
  Thermostat status renamed to Regulator Status

  Revisions are needed to:
  System overview

  Setting alarm temperature range and activating the alarm

  System boundary
  Operational concepts
  Environmental assumptions
  System goals

  Warn the clinician if the infant becomes too hot or cold

Revise the system overview to reflect any changes in how the system interacts
with its environment, any new functionality added to the system to satisfy the
implementation constraints, or any changes in system goals.

6.4 Revise the Operational Concepts

  Entering bounds for alarm?
  Raising and responding to alarm?

Isolette Example -- what changes are needed to the
operational concepts?

If the interaction with other systems or system operators was changed
to meet implementation constraints, the operational concepts should
also be updated.

6.5 Develop Exception Cases
Since the PSSA initiated consideration of how failures should be handled, this is
also an appropriate time to go back and extend the use cases with exception
cases. As the use cases are reviewed and new functionality is added, steps at
which exceptions to the nominal (sunny day) behavior might occur should be
identified. Exception cases should be defined, describing how each exception
will be handled.

Isolette Example -- what are examples of exception use
cases?

  Failure to maintain desired temperature
  Failure to maintain safe temperature
  …others will be revealed in subsequent lectures

6.6 Link Exception Cases to Use Cases

  If an exception can only occur at a few steps in a use
case, those points should be linked to the exception
cases

Here, we deal with the special case
where the alarm may come on
because the Isolette is not yet
“warmed up”.

6.6 Link Exception Cases to Use Cases
  If an exception can occur almost anywhere, specify

when it can occur in a precondition

Continued on next slide…

6.6 Link Exception Cases to Use Cases
  If an exception can occur almost anywhere, specify

when it can occur in a precondition

Continued from previous slide…

6.6 Link Exception Cases to Use Cases

  Consider whether or not the given exception can
contribute to a system hazard identified by the FHA.

6.7 Revise the System Boundary

  If the revised functional architecture created new
monitored or controlled variables, the system
boundary should be updated

For the Isolette Thermostat, the Alarm Temperature Range
monitored variable and the Alarm Control controlled variable
were added, and the Thermostat Status controlled variable
was replaced by the Regulator Status and the Monitor Status
controlled variables.

6.8 Document changes to the
Environmental Assumptions

  New environmental assumptions need to be
identified and documented

  With each additional variable, environmental
assumptions should be re-examined.

  Example: With the new alarm, the temperature range
should be documented, along with supporting
rationale.

6.9 Revise Dependency Diagrams

  Dependency diagrams should be updated as well.

6.10 Revise High-Level Requirements

  Any high-level requirements should be updated if the
change in the system functional architecture affects
them

Summary

  Update the functional architecture to reflect
implementation constraints

  Update supporting documentation accordingly

For You To Do

Acknowledgements

  The material in this lecture is based almost entirely on
  FAA DOT/FAA/AR-08/32, Requirements Engineering

Management Handbook. David L. Lempia & Steven P. Miller.

