CIS 890 -- High-Assurance Systems

Spring 2019

Homework: CubeMX and STM32F Discovery Board
Due Monday, January 28 at 11:59pm

[Note: These instructions are for students using Windows. If you need to use Mac OSX or
Linux, you need to talk to John or Venkat about how to customize the assignment. In general,
only Step 2 is different for Mac or Linux.]

Purpose
The purpose of the assignment is to
e Understand the basic concepts of CubeMX, perform the installation of the tool and
generate code for STM32F Discovery board.
e Setup a development environment to execute the code generated by CubeMX on the
STM32F Discovery board.
Execute a simple program to blink an LED on the STM32F Discovery board.
Perform a debug operation on the code to ensure that the code behaves as expected.

Objectives/ Deliverables

At the end of the assignment, you will have generated application code for the STM32F
Discovery board in FreeRTOS using CubeMX and written custom code inside of the application
to be able to blink an LED on the STM32F Discovery board. You will also have executed the
code on the STM32F Discovery board using an Integrated Development Environment (IDE) and
performed debugging on the code to ensure appropriate results.

1. CubeMX

STM32CubeMX is a graphical tool that allows a very easy configuration of STM32
microcontrollers and the generation of the corresponding initialization C code through a
step-by-step process.

Download
e Go to hitps://www.st.com/en/development-tools/stm32cubemx.html#getsoftware-scroll
and download version 5.0.1 version of CubeMX.
Note: Version 5.0.1 of CubeMX is the latest version of CubeMX at the time of creating
this assignment. All instructions and screenshots that follow are geared towards version
5.0.1.

Creation of a New Project

e After the tool is downloaded, launch the tool and click on File -> New Project.

e Upon selecting New Project, the MCU Selector window opens up. From amongst the
list of MCUs listed, select the STM32F407VG board. In order to navigate through the
overwhelming list of MCUs shown on the window, check the STM32F4 in the series tab
to narrow down the list. It is illustrated in the screenshot below.

https://www.st.com/en/development-tools/stm32cubemx.html#getsoftware-scroll

frequency of up to 168 MHz The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM single-
Series ~ precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit
(MPU) which enhances application security.
Tha QTM2IFEANAYY and STM22FANTvy familv inrnrnnratec hinh_enesd eamhaddad meamanaries (Flach mamnans nin tn 4 Mhate 1in tn 102
[sTm32F0
[sTM32F1 MCUs List: 201 items Display similar items
[sTmM32F2
[=] paibo | Reference arket funitpricefor.] Boas | Package | Flsh | mam Jio | Frea |
00 sTm32F3 tr STM32F4052G STMI2FADSZGTK Actve 6662 LQFP144 1024 kBy... 192 KBytes 114 168 M... 0.
STM32F4 Pl i STM32F407IEHX Active 6338 UFBGA1... 512 kBytes 192 kBytes 140 168 M... 0.
1 sTm3267 T STM32F407IETx Active 6338 LOFP176 512 kBytes 192 kBytes 140 168 M... 0.
5
O ST i — STM32F407IGHX Active 7284 UFBGAT... 1024 kBy... 192 kByles 140 168 M... 0.
vr STM32F407IGTx Active 7284 LQFP176 1024 kBy.. 192 kByles 140 168 M
O stmsau7 17 STM32F407VE STMA2F407VETx Active 5644 LOFP100 512 kByles 192 kBytes 82 168 M
[sTM32L0 v STM32FA07VG STMI2FA07VGTx Acive 657 LQFP100 1024 kBy._ 192 kByles 82 168 M
[sTM32L1 Y7 STM32F407ZE STM32F407ZETx Active 6107 LQFP144 512 kBytes 192 kBytes 114 168 M
I Y7 STM32F4072G STM32F407ZGTx Active 7.033 LQFP144 1024 kBy... 192 kBytes 114 168 M... 0.
- t7 STM32F410C3 STM32F410C8Ux Active 1502 UFQFPN... 64 kBytes 32 kBytes 36 100M... 0.
STM32L4+ =
O stsats S smuaratocs SREINNCT Adke LT LTS [Serorenitigee B PN 02

Figure: MCU Selector on CubeMX
e The board selector window is displayed next. Click on the board displayed as shown in
the picture below.

Boards List: 1 item

| | Oveview | Fatho | Type | MarketingStats | UnitPrice(US5) | MountedDevice |
T STH32F4DISCOVERY Discovery Active 19.89

Figure: Board Selector on CubeMX
e Click Yes on the dialog box that shows up upon the selection of the board.
e |[f all the above instructions have been executed correctly, a window that looks like the
picture shown below should be displayed.

m STM32CubeMX Untitled: STM32FA07VGTx STM32FADISCOVERY

A
STM3 ﬁ i i
CuI;eMX File Window Help

Untitled - Pinout & Configuration

Project Manager

System Core >
Analog >
Timers >
Connectivity >
Multimedia >
Security >
Computing >
Middleware > 1 STM32F407VGTx

LQFP100

Figure: Board Configuration for STM32F407VG Board

Generating Code in FreeRTOS for STM32F Discovery Board
CubeMX generates boiler plate code in FreeRTOS which can later be viewed in an IDE to be
executed on the STM32F Discovery board. The generation of code is simple and can be
achieved by following the instructions given below. There are primarily four things that need to
be done.

A. Enabling FreeRTOS as the middleware and task creation for code generation.

B. Changing the Timebase Source in the System Core tab.

C. Assigning a name and selecting the appropriate toolchain for the generated code in the

Project Manager tab.
D. Generating code.

A. Enabling FreeRTOS as the Middleware and Task Creation for Code Generation

e Click on the Middleware dropdown on the Pinout & Configuration tab.

e Select FREERTOS from the list of available options in the drop-down.

e Check the Enabled checkbox that shows up to the right upon the selection of the
FREERTOS option from the drop-down list.

Pinout & Configuration Clock Configuration
Additional Softwares ~ Pinout
Options ey ~| FREERTOS Mode and Configuration :
d Enabled
System Core > P Eastls
Analog >
Timers >
Connectivity >
Multimedia »
Security >
-
Esie g 5 onfiguration
Middleware =
FATFS & Con rarnet | @ Include param er)
~ FREERTOS [Configure the following parameters: |
LIBJPEG
Q £ 1 D)
MBEDTLS _' i

~ Versions

~ Kernel settinas

Figure: Enabling FreeRTOS in Middleware Tab
Click on the Tasks and Queues option from the Configuration parameters.
Under Tasks, click on the default task and change the name of the task from Default
Task to LEDBIlinkingTask from and the name of the entry function from
StartDefaultTask to StartLEDBIlinkingTask.

Clock Configuration

Edit Task

Task Mame LEDBlinkingTask|

Friority osPriorityMNormal

Stack Size (Words) 128
By Entry Function StartL EDBlinkingTask

Code Generation Option |Default e

Parameter ML

Allocation Dwnamic V

Buffer MName

Control Block MName

fl—

Reset C. -

Tasks
[Task M...| Priority | Stack ... |[Entry F...| Code .. |[Param... [Allocati...|Buffer .. [Contro._|
LEDBI m— MNULL [DynamiciuiLL (MUl

Auddd Delete

radueues

Figure: FreeRTOS Task Creation using CubeMX
B. Changing Timebase Source in the System Core Tab
The default timebase source for the STM32Cube-HAL is SysTick. The reason behind changing
it from SysTick to a different timer is that most of the RTOSs (FreeRTOS in our case) force
SysTick priority to be the lowest which can be an issue when doing scheduling. While we don’t
perform complex scheduling tasks in this assignment, it is a good practice to do so to ensure
that you don’t miss out on doing so for any complex assignments that you might work in future.
e Click on the System Core drop-down in the Pinout & Configuration tab.
e Select the SYS option from the list of options in the drop-down list.
e Change the Timebase Source from SysTick to TIM1 by selecting it from the drop-down
list (TIM1 is used for this demonstration. However, any of the timebase sources other
than SysTick can be used).

Pinout & Configuration Clock Configuration

Additional Softwares

Cy ~ SYS Mode and Configuration
Categories | A7
Bleblig|Serial Wire ~

System sers - [systemwake-vp]
DA Timebase Source [TIMA ~ |
GPIO
DG
MWIC

~r RCC
WWNWDG

Aanalog >

Timers > Configuration

Mo configuration available

Connectivity >

Multimedia >

Security >

Computing >

Middleware e

Figure: Timebase Source Selection from System Core Tab

C. Name Assignment and Toolchain Selection
e Click on the Project Manager tab.
e Assign the name of the project to be FreeRTOS_Exercise in the project name field.
e Select a toolchain/ IDE from the Toolchain/ IDE dropdown. While you could select any
toolchain of your choice, the recommendation is to select select TrueSTUDIO since that
will be the IDE used as explained later in the assignment.

Pinout & Configuration Clock Configuration Project Manager

¢Project Settings

Project Name
[FreeRTOS_Exercise |

Project Location
|C:\Users\margs\OneDrive\Documents |

Application Structure

|Easic [Do not generate the main()

Toolchain Folder Location

Toolchain / IDE
|TrueSTUDIO S | Generate Under Root

cLinker Settings
Minimum Heap Size 0x200
Minimum Stack Size 026400

Figure: Project Settings on Project Manager Tab

D. Code Generation
In order to generate code in FreeRTOS, click on the GENERATE CODE option to the top-right
of the window.

File Window Help ©» oy x

/GTx - STM32F4DISCOVERY !/ FreeRTOS_Exercise.ioc - Project Manager GENERATEGBDE

Clock Configuration

ttings
ime
i_Exercise

cation
margs\OneDrive\Documents

| [Do not generate the main(}

Folder Location | Generating user source code...

/IDE)
jile} v Generate Under Root

tings -
s e lneann

Figure: FreeRTOS Code Generation
The code generation step concludes the usage of CubeMX tool for this assignment.

2. Integrated Development Environment (IDE)

In order to execute the code generated by CubeMX, an IDE is required. Depending on the
Toolchain/ IDE that you selected in the Project Manager tab while on CubeMX, the
corresponding IDE needs to be installed. If you have followed the recommendation from the
previous section and selected TrueStudio, install the Atollic TrueSTUDIO for STM32 IDE.

Download
The Atollic TrueStudio for STM32 IDE can be downloaded from
https://atollic.com/resources/download/windows/.

Once the installer is downloaded, go ahead and install the IDE on your machine.

Importing Projects into Atollic TrueSTUDIO IDE
After the install of the IDE is complete, the project that was generated by CubeMX i.e.
FreeRTOS_Ex needs to be imported into TrueStudio. The application can then be modified/
executed in the IDE. Atollic TrueSTUDIO is similar to Eclipse IDE and you can use your Eclipse
IDE experience to navigate through the IDE if you have any experience with Eclipse prior to this.
In order to import the project into TrueStudio IDE,

e Click on File -> Open Projects From File System.

e Click on Directory and select the project FreeRTOS_Ex from the directory on your

machine.

https://atollic.com/resources/download/windows/

Import Projects from File System or Archive

This wizard analyzes the content of your folder or archive file to find projects and import them in the IDE.

Import source:

e

type filter text

Folder

Use installed project configurators to:
Search for nested projects

Detect and configure project natures

Working Sets

[C] Add project to working sets

Import as
Browse for Folder x
Select the folder to find projects to import
b FreeRTOS_Exercise -

settings
Drivers
Inc
Middlewares
Src
startup i

Folder: FreeRTOS_Exercise

Make Mew Folder Cancel
< Back MNext >

Directory...

|

Archive...

Select All

Deselect All

0 of 0 selected

[[]Hide already open projects

Finish

Figure: Project Import into Atollic TrueStudio

folder structure and the code on the IDE as shown below.
¢ main.c

5

v =

[?5 Project Explorer 52 BE&|% A

(25 DemoProject
(5 Exercise 2.2
(5 Exercise 2.3
v [FreeRTOS Exercise
5 Gl Includes
(2 Drivers
& Inc
(5 Middlewares
v (8 Sic
]
El
]
> B
B
B
B

freertos.c
main.c
stm32fdio_hal_msp.c
stm32fdio_hal_timebase tim.c
stm32fdio_it.c
system_stm32focc
usb_host.c
> [usbh_conf.c
[& usbh_platform.c
(3 startup
FreeRTOS_Exercise.elf.launch
[FreeRTOS Exercise.ioc
[E] STM32F407VG_FLASH.Id
@) syscalls.c
(5 RTOS book Ex.3
(=5 RTOS beok preliminary exercise
(5 RTOS_Exd4
> (25 RTOS_Ex3

-
@ W@ N

2
21
22
23
2

COT Build Console [FreeRTOS_Exercise]

AW e

[g] quevec [tasks.c [g] porte [portmacro.h [} main.c [g] main.c 22
|+ USER CODE BEGIN Header */

: main.c

: Main program body

ies to any and all portions of this file
* that are not between comment pairs U

. Other portions of this file, whether
s the user or by software development tools

* are owned by their respective copyright owners.
* Copyright (c) 2819 STMicroelectronics International N.V.
= All rights reserved.
* Redis ion and use in source and binary forms, ut

* modification, are permitted, provided that the follo
g

= 3.

w

Redi
this 1
Redi.
this
and/or other materials

ributions

list of conditions

and the fol

fications and/or derivative

ons are met:

ribution of source code must retain the above copyright notice,
of conditions and the following disclaimer.
binary form must reproduce the above copyright notice,
wing disclaimer in the documentation
the distribution.

onics nor the names of other
be used to endorse or

te products
n.
s of this

Telu and awrlnsivelu an micracantraller ar

= 8

M B~

(&5 Build Analyzer 52

. =

T a8

'S

o

=

Select...

Cancel |

The project will then be imported into your IDE workspace and you will be able to see the

BT @B BT

] =
FER®Y o % -
mainh
emsis_os.h
usb_hosth
andleTypeDet
HandleTypeDef
hspil : SPI_HandleTypeDef
defaultTaskHandle : o<Threadld
SystemClack_Config(void) : void
MX_GPIO_Initfvoid) : void
MX_I2C1 Init(void) - void
MX_I253_Init(vid) - void
MX_SPIT_Init{veid) : void
StartDefaultTask{const void™ : vo
main(void) int
SystemClack_Config(void) : void
MX_I2C1 _Init(void) : void
MX_I253_Init{vaid) - void
MX_SPIT_Init{vaid) : vaid
MX_GPIO_Init{void) :
StartDefaultTask{const void) : vo
HAL_TIM_PericdElapsedCallbacki
Error_Handlerivoid) : void

RTOS _Ex.9.elf - /RTOS_Ex.9/Debug - 1/16/19 12:12 PM

Memory Regions Memory Details

Region

Start address
020000000

End address
0x20020000

Figure: Imported Project Code on Atollic TrueSTUDIO for STM32 IDE

This concludes the install and import of projects into the Atollic TrueStudio IDE.

- = E
Size Free]
128 KB 109.07KB o

>

3. LED Blinking Program for STM32F Discovery Board on Atollic TrueSTUDIO IDE

From the project code that was imported into the TrueSTUDIO IDE, open the main.c file that you
will find under the Src directory of the project. All the code for the assignment is written in the
main.c file and it is a good idea to take a few minutes at this moment and read through the code
in the file and get a brief understanding.

For the purposes of the LED blinking program, we will modify the code in the
StartLEDBIlinkingTask task that was created in CubeMX. You can find the code for the
StartLEDBIinking task in the main.c file. It will look like this:

void StartLEDBIinkingTask(void const * argument)

{
/* init code for USB_HOST */

MX_USB_HOST_Init();

/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
osDelay(1);

}
/* USER CODE END 5 */

}

Provided below are the functions that can be used to perform Read and Write operations to the
GPIO on the STM32F Discovery board. Utilize the functions to turn ON and turn OFF an LED.
e HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, GPIO_PinState

PinState): Set or clear the selected data port bit.

GPIOx,: where x can be (A..H) to select the GPIO peripheral for
STM32L4 family

GPIO_Pin,: specifies the port bit to be written. This parameter can be one
of GPIO_PIN_x where x can be (0..15).

PinState,: specifies the value to be written to the selected bit. This

parameter can be one of the GPIO_PinState enum values:

GPIO_PIN_RESET: to clear the port pin
GPIO_PIN_SET: to set the port pin

e osDelay(uint32_t millisec): Wait for a time specified in milliseconds before the next
statement executes.

Using the functions specified above, write code in the infinite for loop in the
StartLEDBIlinkingTask function to

Turn ON the Green LED on the board.
Keep the LED ON for a period of 1000 ms.
Turn OFF the Green LED on the board.
Keep the LED OFF for a period of 1000 ms.

The Green LED on the board is a part of the D peripheral of the STM32L4 family, the GPIO pin
is 12 and the PinState is GPIO_PIN_SET to turn ON the LED and GPIO_PIN_RESET to turn
OFF the LED.

4. Execute and Debug the Code on STM32F Discovery Board
Execute the code on the STM32F Discovery board following the instructions below and perform
the task.

e After the code for the LED is written, connect the STM32F Discovery board to your
computer.

e Click on the Run button on the Atollic TrueSTUDIO IDE and click on Debug button.
Doing so starts the execution of the program on the STM32F Discovery board in Debug
mode.

Note: Debug mode is suitable for the assignment since it is easy to watch the execution
of the code that is written.

Place a breakpoint on the line of code after the LED is turned ON and observe the LED in the
ON state. Take a picture of the STM32F board with the LED turned ON to include it as part of

your deliverables for this assignment.

Deliverables
e The main.c file from your FreeRTOS_Ex project that contains the code in the

StartLEDBIlinkingTask function that makes the green LED blink.
e Pictures of the Green LED turned ON upon hitting the breakpoint placed in code.

